Updates in Lipid Management

Sadeer Fhadil MFRPSI MRPharmS IPresc Lead Cardiac Pharmacist Barts Health NHS Trust

- **1. Why the focus on lipids?**
- **2. QOF indicators**
- 3. How? Case study

CVD is responsible for 24% of all deaths in the UK¹

CVD leads to 1 death every 3 minutes¹ CVD healthcare costs total £9 billion per year¹ NHS Long Term Plan names CVD as "The single biggest area where the NHS can save lives over the next 10 years"²

CVD, cardiovascular disease; NHS, National Health Service.

1. British Heart Foundation. UK Factsheet January 2022. Available at: https://www.bhf.org.uk/-/media/files/research/heart-statistics/bhf-cvd-statistics/---uk-factsheet.pdf. Accessed August 2022. 2. NHS. The NHS Long Term Plan. Available at: https://www.longtermplan.nhs.uk/wp-content/uploads/2019/08/nhs-long-term-plan-version-1.2.pdf. Accessed August 2022.

After four decades of steady decline in CVD deaths, improvement has recently slowed¹

Deaths from all heart and circulatory diseases, in the UK¹

- Deaths from all heart and circulatory diseases, across all ages - Deaths from all heart and circulatory diseases, under 75*

*Premature deaths.

CVD, cardiovascular disease.

1. British Heart Foundation. Heart and Circulatory Disease Statistics 2022. Available at: <u>https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-statistics-publications/cardiovascular-disease-statistics-2022</u>. Accessed August 2022.

ASCVD risk is impacted by a range of modifiable and non-modifiable factors¹

ApoB, apolipoprotein B; ASCVD, atherosclerotic cardiovascular disease; LDL-C, low-density lipoprotein cholesterol.

1. Visseren FLJ, et al. Eur Heart J. 2021;42(34):3227-3337.

The Framingham Study: Relationship Between Cholesterol and CHD Risk

Serum total cholesterol, mg/dL (mmol/L)

Nikolai Nikolaevich Anitschkow (1885–1964)

"Without cholesterol there can be no atherosclerosis"

Stehbens WE. Anitschkow and the cholesterol over-fed rabbit. Cardiovasc Pathol 1999;8:177-8. Finking G, Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885-1964) established the cholesterol-fed rabbit as a model. Igor E. Konstantinov, Nicolai Mejevoi, and Nikolai M. Anichkov. Nikolai N. Anichkov and His Theory of Atherosclerosis. Tex Heart Inst J. 2006; 33(4): 417–423

.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764970/ https://pubmed.ncbi.nlm.nih.gov/10722241/

Castelli WP. Am J Med. 1984;**76**:4-12 https://pubmed.ncbi.nlm.nih.gov/6702862/

Lower achieved LDL-C correlates to lower risk of CV events, regardless of intervention

- O Ezetimibe
- Fibrate
- O Bile acid resin
- O Niacin
- O Diet/unsaturated fatty acid
- Ileal bypass
- CTTC trials (statin)

For illustrative purposes only; individual trials should not be directly compared.

Data from studies of non-statin lipid-lowering medications superimposed upon data from the CTTC 2005 meta-analysis. The IMPROVE-IT trial was adequately powered to show the efficacy on incremental LDL-C lowering on CV outcomes. CV, cardiovascular; CTTC, Cholesterol Treatment Trialists' Collaboration; LDL-C Low-density lipoprotein cholesterol Baigent, et al. *Lancet*. 2005;366;1267–1278; CTT Collaboration. *Lancet*. 2010;376:1670–1681; Cannon, et al. *N Engl J Med*. 2015;372:2387–239

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)67394-1/fulltext

The key initiating event in atherogenesis is the retention of LDL-C and other cholesterol-rich apo B-containing lipoproteins within the arterial wall¹

LDL is the most abundant atherogenic lipoprotein in plasma and the key deliverer of cholesterol to the artery wall⁴

apo B: apolipoprotein B; LDL-C: low-density lipoprotein cholesterol

1. ESC/ÉAS Guidelines for the management of dyslipidaemias. Mach F, et al. Eur Heart J 2020;41:111–188; 2. Holmes MV, Ala-Korpela M. Nat Rev Cardiol. 2019;16:197–98; 3. Feingold KR. Introduction to Lipids and Lipoproteins. [Updated 2021 Jan 19]. In: Feingold KR, et al. Endotext [Internet]: MDText.com, Inc. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305896/ (accessed September 2021); 4. Borén J, et al. Eur Heart J 2020;41:2313–2330.

As LDL-C levels increase, the development of atherosclerotic plaques increases in a dose-dependent manner^{1,2}

Mechanisms underlying the entry, retention, and accumulation of LDL in arterial walls³

AGE: advanced glycation end-product; LDL: low-density lipoprotein; LDL-C: low density lipoprotein-cholesterol; SMC: smooth muscle cells.

1. ESC/EAS Guidelines for the management of dyslipidaemias. Mach F, et al. Eur Heart J 2020;41:111–188; 2. Ference BA et al. Eur Heart J 2017;38:2459–2472; 3. Borén J, et al. Eur Heart J 2020;41:2313–2330; 4. Goldstein J, Brown M. Cell 2015;161(1):161–172...

Rupturing of atherosclerotic plaques can lead to CV events, such as stroke, myocardial infarction and ultimately cardiac death^{1,2}

	Foam cells	Fatty streak	Intermediate lesion	Atheroma	Fibrous plaque	Lesion rupture/abrasion
From		of life	Erom 3	decade of life	From /th	decade of life
					Smooth muscle	Thromhoeis
Growth mainly by lipid accumulation			and collagen	Haematoma		

Figure adapted from Pepine CJ, et al. 1998.

Unstable or ruptured plaques block blood flow and increase the risk of CV events; early and robust treatment may reduce the risk of CV events²

Treatment targets for LDL-C

ESC/EAS recommendations across CV risk categories¹

AAC: Accelerated Access Collaborative; ASCVD: atherosclerotic cardiovascular disease; CKD: chronic kidney disease; CV: cardiovascular; DM: diabetes mellitus; EAS: European Atherosclerosis Society; eGFR: estimated glomerular filtration rate; ESC: European Society of Cardiology; HDL-C: high-density lipoprotein cholesterol; FH: familial hypercholesterolaemia; JBS: Joint British Societies; LDL-C: low-density lipoprotein cholesterol; LLT: lipid-lowering therapy; NICE: National Institute for Health and Care Excellence; T1/2DM: type 1/2 diabetes mellitus; TG: triglycerides 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk | European Heart Journal | Oxford Academic (oup.com)

Mach F, et al. ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J 2020;41:111–188; 2. Khatib R & Neely D on behalf of the AAC Clinical Subgroup. June 2021. Pathway approved by NICE July 2021. Available at: https://www.england.nhs.uk/aac/publication/summary-of-national-guidance-for-lipid-management/ (accessed September 2021).

LDL-C and plaque regression

Adapted from Puri et al. 2013.

SATURN: The Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin vs. Atorvastatin; ASTEROID: A Study to Evaluate the Effect of Rosuvastatin on Intravascular Ultrasound-Derived Coronary Atheroma Burden; ILLUSTRATE: Investigation of Lipid Level Management Using Coronary Ultrasound To Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation; REVERSAL: Reversal of Atherosclerosis with Aggressive Lipid Lowering; STRADIVARIUS: Strategy To Reduce Atherosclerosis Development InVolving Administration of Rimonabant—the Intravascular Ultrasound Study; CAMELOT: Comparison of Amlodipine vs. Enalapril to Limit Occurrences of Thrombosis.

- **1. Why the focus on lipids?**
- **2. QOF indicators**
- 3. How? Case study

QOF Indicators 2023/4

Table 1. Indicators related to lipid modification in the Quality and OutcomesFramework (QOF) of the General Medical Services (GMS) contract.

CHOLOO1 Percentage of patients on the QOF Coronary Heart Disease, Peripheral Arterial Disease, Stroke/TIA or Chronic Kidney Disease	14	70- 95%
declined or clinically unsuitable, another lipid lowering therapy		
CHOL002 Percentage of patients on the QOF Coronary Heart Disease,	16	20-
Peripheral Arterial Disease, or Stroke/TIA Register, who have a		35%
recording of non HDL cholesterol in the preceding 12 months that is		
lower than 2.5 mmol/L, or where non HDL cholesterol is not recorded a		
recording of LDL cholesterol in the preceding 12 months that is lower		
than 1.8 mmol/L		

Data from: [NHS England, 2023]

ceg

QOF Cholesterol Control and Lipid Management

'Cholesterol Control and Lipid Management' was introduced to QOF this year, designed to support high-risk CVD patients who could benefit from further combination therapies.

Practices should be aware: At the point data is collected to assess QOF achievement, patients will need to have a prescription for a statin/lipid lowering therapy on their records (CHOL001) and have a non-HDLC or LDLC reading at or below targets within the 12-month QOF Period (CHOL002). UK guidance indicates a 12-week wait from initiation of therapy to re-testing of lipids, so practices will need to have initiated the above activity by 31 December 2023 to get the appropriate follow-up test results in the system in time for the QOF data collection.

Steps to take now to maximise your achievement

We suggest reviewing your QOF indicators now to identify the patients who either:

- Need a statin or alternative lipid lowering therapy to be prescribed (CHOL001)
- 2. Have not had a Full Lipid Profile in the last 12 months (CHOL002)
- 3. Have not had a non-HDL cholesterol below 2.5 (or LDL below 1.8)

For those in Group 1, the statin/lipid lowering therapy (LLT) needs to be prescribed after 1 October – please check they have a medication on their repeat list in advance of this date. If not, consider inviting them to discuss starting one. You may want to block out time a month after for your pharmacist to ensure patients have been prescribed their statin/LLT to meet the indicator.

In Group 2, there may be large numbers of patients who have not had a Full Lipid Profile blood test for over 12 months. To avoid overloading phlebotomy clinics, please consider staggering the recall. To aid the booking into practice clinics, consider using <u>Accubook</u>.

For patients in Group 3, review the medication, check adherence and lifestyle measures, and consider increasing statin dose, adding ezetimibe or injectable therapies (inclisiran/PCSK9). Add a reminder and explain to the patient that they need a repeat blood test in 3 months' time. Doing this earlier will give you enough time to work through this process and ensure the cholesterol blood **Essentially:**

Aim to put everyone with CVD onto a high dose statin (or an alternative)

Get as many patients as possible down to an LDL <1.8mmol/L

If you lower the LDL, you <u>will</u> lower the CVD risk, regardless of the starting level

- **1. Why the focus on lipids?**
- **2. QOF indicators**
- 3. How? Case study

Landscape & Timeline

Historical perspective of LDL-C levels achieved in major randomised controlled trials of lipid-lowering therapies^{1,2}

Adapted from Masana, et al. J Clin Lipidol. 2010 and Schwartz, et al. N Eng J Med. 2018.

Arrows indicate the mean LDL decrease obtained in the study.

LDL-C, low-density lipoprotein-cholesterol.

1. Masana et al. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels - The zero-LDL hypothesis. J Clin Lipidol. 2018:12(2):292-299. 2. Schwartz GG, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Eng J Med. 2018;379(22):2097–2107 https://pubmed.ncbi.nlm.nih.gov/29398429/

Doubling the dose with statins does not double the effect on LDL-C reduction¹

- The dose required to reduce serum LDL-C concentrations to a similar degree varies substantially among statins
- The response to dose increases is not proportional
- In general, a doubling of the dose above the minimal effective dose, decreases serum LDL-C concentrations by an additional 6%
- The maximal reduction in serum LDL-C concentrations induced by statin treatment ranges from 24–60%

Adapted from Knopp. N Engl J Med, 1999.

Lowering LDL-C correlates with reduced CV risk¹

Up to **80%** of patients with ASCVD* who use moderate or high intensity statins do not achieve the recommended LDL-C goal[†] of <1.8 mmol/L^{2,3,4}

Additional LLTs are needed to complement current therapies and help uncontrolled patients achieve their LDL-C goals^{2,3}

*Documented ASCVD included a history of acute MI, silent MI, unstable angina, coronary revascularisation procedures, clinically significant CHD, symptomatic peripheral arterial disease or cerebrovascular atherosclerotic disease.³

[†]The 2019 ESC/EAS Guidelines recommend an LDL-C reduction of ≥50% from baseline and LDL-C goals of 1.8 mmol/L and 1.4 mmol/L in high risk and very high risk patients, respectively.³

CI, confidence interval; CV, cardiovascular; CV, cardiovascular; LDL-C, low-density lipoprotein cholesterol; ASCVD, atherosclerotic cardiovascular disease; LLT, lipid lowering therapy.

1. Ference BA, *et al.* Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. *Eur Heart J* 2018;39:2540–2545; 2. Fox KM, *et al.* Treatment patterns and low-density lipoprotein cholesterol (LDL-C) goal attainment among patients receiving high- or moderate-intensity statins. *Clin Res Cardiol* 2018;107:380–388; 3. Mach, *et al.* 2019 ESC/EAS Guidelines for the management of dyslipidaemias: *lipid modification to reduce cardiovascular risk. Eur Heart J.* 2020;41:111–188. 4.Kotseva K, *et al.* Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. *Eur J Res Prev Cardio* 2019;26:824–835.

THERAPEUTIC APPROACHES TO REDUCING LDL-C VIA THE LDL RECEPTOR small molecules, monoclonal antibodies, siRNA

ACL – ATP-citrase lyase; CoA – coenzyme A; HMG – 3-hydroxy-3-methylglutaryl; LDL – low-density lipoprotein; LDL-C – low-density lipoprotein cholesterol; LDLR – low-density lipoprotein receptor; mRNA – messenger ribonucleic acid; NPC1L1 – Niemann Pick C1-like 1 protein; PCSK9 – proprotein convertase subtilisin/kexin type 9; siRNA – small interfering ribonucleic acid

References: 1. Nordestgaard BG et al. Nat Rev Cardiol 2018;15(5):261-272. 2. Landmesser U et al. Eur Heart J 2018;39(14):1131-1143. 3. Agarwala A and Goldberg AC. Future Cardiol 2020;16(5):361-371.

Intensity of lipid-lowering treatment

Treatment	Average LDL-C reduction
Moderate intensity statin	30%
High intensity statin	50%
Ezetimibe	20%
High intensity statin + Ezetimibe	65%
Bempedoic acid	20%
Bempedoic acid + Ezetimibe	40%
Inclisiran	50%
PCSK9i	60%
PCSK9i + High intensity statin + Ezetimibe	85%

lipid clinic

Case study

64 year old male, presents with inferior STEMI, managed with PCI to RCA

- Nil significant PMH or FHx of CVD
- BP 132/74 mmHg; Wt 83kg; BMI 27kg/m²; current smoker
- TFTs / LFTs / U&Es / HbA1c unremarkable

Lipid profile on admission	
тс	6.7 mmol/L
Non-HDL-C	5.5 mmol/L
LDL-C	4.6 mmol/L
TG	1.86 mmol/L
HDL-C	1.2 mmol/L

- Post-PCI echo: LV 55-60%; Nil RWMA or valvular disease
- CRUSADE score moderate

Medicines on discharge

- Aspirin 75mg OD
- Ticagrelor 90mg BD for 12 months
- Atorvastatin 80mg OD
- Bisoprolol 2.5mg OD
- Ramipril 2.5mg OD
- Lansoprazole 30mg OD
- GTN 400mcg spray 1-2 prn

1.83 mmol/L

1.2 mmol/L

TG

HDL-C

Lipid profile at 3 months	
тс	4.9 mmol/L
Non-HDL-C	3.6 mmol/L
LDL-C	2.7 mmol/L
TG	1.98 mmol/L
HDL-C	1.3 mmol/L

Lipid profile at 12 months	
тс	4.2 mmol/L
Non-HDL-C	3.0 mmol/L
LDL-C	2.2 mmol/L
TG	1.75 mmol/L
HDL-C	1.2 mmol/L

Inclisiran – approved for NEL

- 2 Maintenance doses a year
- HCP-administered
- Subcutaneous injection
- No refrigeration required
- Fixed dose, no adjustments required
- Prescribed on FP10 or purchase direct from AAH (FP34D form)

MANAGING MISSED DOSES

PLANNED DOSE MISSED	Administer inclisiran and continue dosing
BY <3 MONTHS	as per patient's original schedule ¹
PLANNED DOSE MISSED BY >3 MONTHS	Start new dosing schedule: initial dose, second dose at 3 months, followed by a dose every 6 months ¹

Thank you

CVD Risk and Lipids Clinic @ Barts

Advice and Refer via ERS

"To prevent a heart attack, take one statin every day. Take it out for a run, then take it to the gym, then take it for a bike ride…"